Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

N, N^{\prime}-Bis(dipiperidin-1-ylmethylene)-propane-1,3-diamine and N, N^{\prime}-bis-(1,3-dimethylperhydropyrimidin-2-ylidene)propane-1,3-diamine

Sonja Herres, Ulrich Flörke* and Gerald Henkel

Anorganische und Analytische Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany
Correspondence e-mail: uf@chemie.uni-paderborn.de

Received 27 January 2004
Accepted 24 March 2004
Online 30 April 2004
The molecular structures of the title compounds, $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{~N}_{6}$ and $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~N}_{6}$, respectively, show the two guanidyl moieties each connected by propyl bridges. The different substitution pattern of the guanidyl groups has no influence on the distinct localization of their $\mathrm{C}=\mathrm{N}$ double bonds. Both compounds exhibit approximate twofold symmetry and the crystal packing shows no prominent hydrogen-bonding interactions.

Comment

In the search for bifunctional N -donor ligands able to stabilize unusually high metal oxidation states, we have extended our studies to guanidyl-type systems. The first derivative, the ligand bis(tetramethylguanidino)propylene (btmgp), and its complexes with Cu, Fe and Ni , have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Herres, 2002). We have now developed the title compounds, (I) [a piperidine derivative, bis(dipiperidylguanidino) propylene] and (II) [a propylene derivative, 1,3bis(dimethylpropyleneguanidino)propane], as novel ligands for use in biomimetic coordination chemistry. In $\mathrm{Cu}-\mathrm{O}_{2}$ chemistry in particular, the modification of the guanidyl moieties within the ligands is expected to control the formation of different $\mathrm{Cu}-\mathrm{O}_{2}$ species (Herres et al., 2004).

The molecule of (I) lies roughly on a non-crystallographic twofold axis running through C 13 , with a trans arrangement of the guanidyl groups relative to the $\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ centre. The resulting torsion angles are $\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14=$ $70.3(1)^{\circ}$ and $\mathrm{N} 4-\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12=68.8(1)^{\circ}$. The $\mathrm{C}-\mathrm{N}$ single bonds range from 1.392 (1) to 1.404 (1) \AA, while the $\mathrm{C}=\mathrm{N}$ double bonds, $\mathrm{C} 1=\mathrm{N} 1$ and $\mathrm{C} 14=\mathrm{N} 4$, have similar values, with a mean of 1.276 (1) \AA. The mean of the $\mathrm{N} 2-\mathrm{C} 1-$ N 3 and $\mathrm{N} 5-\mathrm{C} 15-\mathrm{N} 6$ angles is $113.91(10)^{\circ}$, and the mean of the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12$ and $\mathrm{C} 15-\mathrm{N} 4-\mathrm{C} 14$ angles is $119.88(9)^{\circ}$. Thus, the guanidyl double bonds in (I) are clearly localized. The same is valid for the related compound (II). Here, the
corresponding $\mathrm{C}-\mathrm{N}$ single-bond lengths range from 1.375 (3) to 1.407 (3) \AA, and the mean of the $\mathrm{C} 6=\mathrm{N} 3$ and $\mathrm{C} 10=\mathrm{N} 4$ double bonds is 1.284 (2) \AA. The mean of the $\mathrm{N} 1-\mathrm{C} 6-\mathrm{N} 2$ and $\mathrm{N} 5-\mathrm{C} 10-\mathrm{N} 6$ angles is $114.8(2)^{\circ}$, and the mean of the $\mathrm{C} 6-\mathrm{N} 3-\mathrm{C} 7$ and $\mathrm{C} 9-\mathrm{N} 4-\mathrm{C} 10$ angles is $119.5(2)^{\circ}$.

(I)

(II)

Similar double-bond localization is observed in bis(tetramethylguanidino)naphthalene (Raab et al., 2002), with equally unprotonated imine N and $\mathrm{N} R_{2}$ amino groups having a mean $\mathrm{C}=\mathrm{N}$ bond length of 1.282 (3) \AA and a mean $\mathrm{C}-\mathrm{N}$ bond length of 1.384 (1) A. In bis(tetramethylguanidino)biphenyl (Pruszynski et al., 1992), with a protonated imine N atom, strong delocalization is observed among the three $\mathrm{C}-\mathrm{N}$ bonds, which are in the range 1.31 (1)-1.34 (1) \AA. 2-Cyanoguanidine, with $\mathrm{C}-\mathrm{N}$ bonds in the range 1.3327 (3)1.3441 (3) Å (Hirshfeld \& Hope, 1980), and, to a lesser extent, tetrabenzylcyanoguanidine, with $\mathrm{C}=\mathrm{N}=1.315 \AA$ and $\mathrm{C}-\mathrm{N}=$ 1.370 Å (no s.u. values given; Shiba et al., 1993), also show delocalization, but this is due to the cyano groups attached to the imine N atom. Substitution of the NH_{2} groups in cyanoguanidine with NBz_{2} (Bz is benzyl) leads to the observed increase in localization.

For compound (I), the shortest non-bonding intramolecular $\mathrm{C}-\mathrm{H} \cdots A$ distance is $\mathrm{C} 14-\mathrm{H} 14 B \cdots \mathrm{~N} 5$, with $\mathrm{H} \cdots \mathrm{N}=2.45 \AA$,

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The $\mathrm{C} 2 \cdots \mathrm{~N} 3{ }^{\mathrm{ii}}$ interaction is depicted [symmetry code: (ii) $-x, 2-y,-z$].
while the shortest intermolecular distance results from a $\mathrm{C} 4-$ $\mathrm{H} 4 A \cdots \mathrm{~N} 4^{\mathrm{i}}$ interaction, with $\mathrm{H} \cdots \mathrm{N}=2.86 \AA$ [symmetry code: (i) $\left.x+\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}\right]$. For compound (II), the corresponding distances are $\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 3^{\mathrm{ii}}=2.62 \AA$ (Fig. 2) and $\mathrm{C} 12-$ $\mathrm{H} 12 B \cdots \mathrm{~N} 2^{\mathrm{iii}}=2.68 \AA$ [symmetry codes: (ii) $-x, 2-y,-z$; (iii) $x+1, y-1, z]$. The former interaction generates a hydrogen-bonded dimer with graph set $R_{2}^{2}(10)$ (Fig. 2).

Experimental

Compound (I) was prepared as follows: a solution of $N, N, N^{\prime}, N^{\prime}$ dipiperidylchloroformamidinium chloride ($7.53 \mathrm{~g}, 30 \mathrm{mmol}$) in dry MeCN was added dropwise under vigorous stirring to an ice-cooled solution of 1,3-diaminopropane ($1.11 \mathrm{~g}, 15 \mathrm{mmol}$) and triethylamine $(4.18 \mathrm{ml}, 3.03 \mathrm{~g}, 30 \mathrm{mmol})$ in dry MeCN . After 3 h under reflux, a solution of $\mathrm{NaOH}(1.2 \mathrm{~g}, 30 \mathrm{mmol})$ in water was added. The solvents and NEt_{3} were then evaporated under vacuum. In order to deprotonate the bis-hydrochloride, $50 \mathrm{wt} \% \mathrm{KOH}$ (aqueous, 15 ml) was added and the free base was extracted into the MeCN phase ($3 \times$ 20 ml). The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ over charcoal. After filtration over Celite, the solvent was evaporated under reduced pressure. The pure product, (I), was obtained as a white powder (yield $66 \%, 4.26 \mathrm{~g}$). Colourless crystals of (I) suitable for Xray diffraction were obtained by crystallization from a cold saturated MeCN solution. Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.48-1.61(m, 24 \mathrm{H}$, Pip-CH 2$), 1.80\left(q, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02(t, 16 \mathrm{H}$, Pip$\mathrm{CH}_{2}$), $3.18\left(t, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.8$ (Pip), 25.9 (Pip), 34.5 (C13), 46.7 (C12, C14), 49.1 (Pip), 160.0 (C quart.); IR (KBr, $v, \mathrm{~cm}^{-1}$, important bands): $2927(v s), 1626(v s, \mathrm{C}=\mathrm{N}), 1608(s$, $\mathrm{C}=\mathrm{N}$), 1398 (s), 1367 (s), 1246 ($s), 1209(s)$; EI-MS: $m / z(\%) 430$ (42) $\left[M^{+}\right], 346$ (10) $\left[M^{+}-\mathrm{Pip}\right], 237$ (13), 222 (81), 196 (12), 154 (41), 126 (43), 85 (51) [HPip], 84 (100) [Pip], 69 (22). Compound (II) was prepared as follows: a solution of N, N^{\prime}-dimethylpropylenechloroformamidinium chloride ($7.33 \mathrm{~g}, 40 \mathrm{mmol}$) in dry MeCN was added dropwise under vigorous stirring to an ice-cooled solution of 1,3diaminopropane ($1.48 \mathrm{~g}, 20 \mathrm{mmol}$) and triethylamine ($5.57 \mathrm{ml}, 4.04 \mathrm{~g}$, 40 mmol) in dry MeCN. After 3 hours under reflux, a solution of $\mathrm{NaOH}(1.6 \mathrm{~g}, 40 \mathrm{mmol})$ in water was added. Further treatment was carried out as for (I). The pure product, (II), was obtained as a colourless oil which crystallized after two months, giving needles suitable for X-ray diffraction (yield $92 \%, 5.4 \mathrm{~g}, 18.4 \mathrm{mmol}$). Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.50\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.68\left(m, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70\left(s, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 2.95\left(m, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02(t, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.9\left(\mathrm{CH}_{2}\right), 32.3(\mathrm{C} 8), 39.3$
$\left(\mathrm{CH}_{3}\right), 45.8(\mathrm{C} 7, \mathrm{C} 9), 48.4\left(\mathrm{CH}_{2}\right), 157.5$ (C quart.); IR (KBr, $v, \mathrm{~cm}^{-1}$, important bands): $2921(s), 2858(s), 1621(v s, \mathrm{C}=\mathrm{N}), 1576(s, \mathrm{C}=\mathrm{N})$, $1541(s)$; CI-MS: $m / z 294(25)\left[M^{+}\right]$. The formamidinium salts were prepared according to the literature procedures of Kantlehner et al. (1984).

Compound (I)

Crystal data
$\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{~N}_{6}$
$M_{r}=430.68$
Monoclinic, $P 2_{1 / n} / n$
$D_{x}=1.141 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=10.0619$ (7) \AA
$b=19.8127$ (13) \AA
$c=12.7511$ (8) \AA
$\beta=99.594$ (2) ${ }^{\circ}$
Cell parameters from 3799
$V=2506.4$ (3) \AA^{3}
reflections
$\theta=2.3-27.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Prism, colourless
$0.40 \times 0.35 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
4055 reflections with $I>2 \sigma(I)$
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.951, T_{\text {max }}=0.989$
19511 measured reflections
6205 independent reflections
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-22 \rightarrow 26$
$l=-12 \rightarrow 17$
3843 standard reflections intensity decay: $<1 \%$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0397 P)^{2}\right]$
$w R\left(F^{2}\right)=0.090$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=0.86$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{N} 1-\mathrm{C} 1$	$1.2753(14)$	$\mathrm{N} 4-\mathrm{C} 14$	$1.4629(13)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.4616(13)$	$\mathrm{N} 5-\mathrm{C} 15$	$1.3924(13)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.4039(14)$	$\mathrm{N} 6-\mathrm{C} 15$	$1.4002(13)$
$\mathrm{N} 3-\mathrm{C} 1$	$1.3999(14)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.5144(16)$
$\mathrm{N} 4-\mathrm{C} 15$	$1.2776(13)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.5171(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12$	$120.24(9)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$111.42(9)$
$\mathrm{C} 15-\mathrm{N} 4-\mathrm{C} 14$	$119.52(9)$	$\mathrm{N} 4-\mathrm{C} 14-\mathrm{C} 13$	$109.23(9)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	$125.94(10)$	$\mathrm{N} 4-\mathrm{C} 15-\mathrm{N} 5$	$125.82(10)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$120.11(10)$	$\mathrm{N} 4-\mathrm{C} 15-\mathrm{N} 6$	$120.12(10)$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 2$	$113.86(10)$	$\mathrm{N} 5-\mathrm{C} 15-\mathrm{N} 6$	$113.95(9)$
$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$109.44(9)$		
C12-N1-C1-N2	$165.14(9)$	$\mathrm{C} 14-\mathrm{N} 4-\mathrm{C} 15-\mathrm{N} 6$	$163.03(9)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$117.55(12)$	$\mathrm{C} 25-\mathrm{N} 6-\mathrm{C} 15-\mathrm{N} 4$	$122.44(11)$

Compound (II)

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~N}_{6}$	$Z=2$
$M_{r}=294.45$	$D_{x}=1.191 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.9057(7) \AA$	Cell parameters from 718
$b=7.6661(7) \AA$	reflections
$c=16.3568(16) \AA$	$\theta=2.5-21.1^{\circ}$
$\alpha=89.307(3)^{\circ}$	$\mu=0.08 \mathrm{~mm}^{\circ}$
$\beta=82.355(2)^{\circ}$	$T=120(2) \mathrm{K}$
$\gamma=73.152(2)^{\circ}$	Prism, colourless
$V=821.07(14) \AA^{\circ}$	$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

$Z=2$
$1.191 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation reflections
$\theta=2.5-21.1^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=120$ (2) K
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

Table 2
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$ for (II).

N1-C6	$1.375(3)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.464(2)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.407(3)$	$\mathrm{N} 5-\mathrm{C} 10$	$1.393(3)$
$\mathrm{N} 3-\mathrm{C} 6$	$1.279(2)$	$\mathrm{N} 6-\mathrm{C} 10$	$1.385(2)$
$\mathrm{N} 3-\mathrm{C} 7$	$1.453(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.518(3)$
$\mathrm{N} 4-\mathrm{C} 10$	$1.289(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.510(3)$
C6-N3-C7	$119.93(19)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$112.94(19)$
$\mathrm{C} 10-\mathrm{N} 4-\mathrm{C} 9$	$119.16(19)$	$\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 8$	$110.21(18)$
N3-C6-N1	$119.2(2)$	$\mathrm{N} 4-\mathrm{C} 10-\mathrm{N} 6$	$118.5(2)$
N3-C6-N2	$125.9(2)$	$\mathrm{N} 4-\mathrm{C} 10-\mathrm{N} 5$	$126.45(19)$
N1-C6-N2	$114.7(2)$	$\mathrm{N} 6-\mathrm{C} 10-\mathrm{N} 5$	$114.86(18)$
N3-C7-C8	$110.09(19)$		
			$16.4(3)$
C7-N3-C6-N2	$12.8(3)$	$\mathrm{C} 9-\mathrm{N} 4-\mathrm{C} 10-\mathrm{N} 5$	

Data collection

Bruker SMART CCD area-detector	1931 reflections with $>2 \sigma(I)$
\quad diffractometer	$R_{\text {int }}=0.047$
φ and ω scans	$\theta_{\max }=28.3^{\circ}$
Absorption correction: multi-scan	$h=-8 \rightarrow 9$
$\quad(S A D A B S ;$ Bruker, 2002)	$k=-9 \rightarrow 10$
$T_{\min }=0.910, T_{\max }=0.989$	$l=-21 \rightarrow 21$
7147 measured reflections	726 standard reflections
4053 independent reflections	intensity decay: $<1 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.113$
$S=0.84$
4053 reflections
194 parameters
H-atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0224 P)^{2}\right. \\
\quad+0.0587 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.23 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

For both compounds, all H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ in (I) and 0.98 and $0.99 \AA$ in (II),
and refined as riding on their attached C atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2002); software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1207). Additional figures are also available. Services for accessing these data are described at the back of the journal.

References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Harmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.
Herres, S. (2002). Diploma thesis, University of Paderborn, Germany.
Herres, S., Heuwing, A. J., Schneider, J., Flörke, U. \& Henkel, G. (2004). Angew. Chem. Submitted.
Hirshfeld, F. L. \& Hope, H. (1980). Acta Cryst. B36, 406-415.
Kantlehner, W., Haug, E., Mergen, W. W., Speh, P., Maier, T., Kapassakalidis, J. J., Bräuner, H.-J. \& Hagen, H. (1984). Liebigs Ann. Chem. 1, 108126.

Pohl, S., Harmjanz, M., Schneider, J., Saak, W. \& Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.
Pruszynski, P., Leffek, K. T., Borecka, B. \& Cameron, T. S. (1992). Acta Cryst. C48, 1638-1641.
Raab, V., Kipke, J., Gschwind, R. M. \& Sundermeyer, J. (2002). Chem. Eur. J. 8, 1682-1693.
Schneider, J. (2000). PhD thesis, University of Duisburg, Germany.
Shiba, R., Takahashi, M., Shinozaki, H., Ebisuno, T. \& Takimoto, M. (1993). Bull. Chem. Soc. Jpn, 66, 2665-2667.
Spek, A. L. (2002). PLATON. Version of January 2002. University of Utrecht, The Netherlands.
Waden, H. (1999). PhD thesis, University of Oldenburg, Germany.

